Strengthened Semidefinite Programming Relaxations for the Max-cut Problem
نویسندگان
چکیده
In this paper we summarize recent results on finding tight semidefinite programming relaxations for the Max-Cut problem and hence tight upper bounds on its optimal value. Our results hold for every instance of Max-Cut and in particular we make no assumptions on the edge weights. We present two strengthenings of the well-known semidefinite programming relaxation of Max-Cut studied by Goemans and Williamson. Preliminary numerical results comparing the relaxations on several interesting instances of Max-Cut are also presented.
منابع مشابه
New semidefinite programming relaxations for the Linear Ordering and the Traveling Salesman Problem
In 2004 Newman [43] suggested a semidefinite programming relaxation for the Linear Ordering Problem (LOP) that is related to the semidefinite program used in the Goemans-Williamson algorithm to approximate the Max Cut problem [22]. Her model is based on the observation that linear orderings can be fully described by a series of cuts. Newman [43] shows that her relaxation seems better suited for...
متن کاملNew Convex Relaxations for the Maximum Cut and VLSI Layout Problems
It is well known that many of the optimization problems which arise in applications are “hard”, which usually means that they are NP-hard. Hence much research has been devoted to finding “good” relaxations for these hard problems. Usually a “good” relaxation is one which can be solved (either exactly or within a prescribed numerical tolerance) in polynomial-time. Nesterov and Nemirovskii showed...
متن کاملSemidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملCsc5160: Combinatorial Optimization and Approximation Algorithms Topic: Semidefinite Programming 22.1 Semidefinite Programming Problem
In this lecture, we provide another class of relaxations, called Semidefinite Programming Relaxation. These serve as relaxations for several NP-hard problems, in particular, for problems that can be expressed as strict quadratic programs. The relaxed problems, together with techniques like randomized rounding, give good approximation algorithms to hard combinatorial problems. We will illustrate...
متن کاملA sub-constant improvement in approximating the positive semidefinite Grothendieck problem
Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we describe a polynomial-time algorithm for the positive semidefinit...
متن کامل